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ABSTRACT

A high performance W-band monolithic
two-stage LNA based on pseudomorphic

InGaAs/GaAs HEMT devices has been
developed. This amplifier has a measured small
signal gain of 13.3 dB at 94 GHz and 17 dB at
89 GHz. The noise figure is 5.5 dB from 91 to

95 GHz. This is the best reported performance
of a W-band monolithic LNA. The measured
results of this MMIC LNA even rival some of
the recently reported hybrid LNAs. A rigorous
analysis procedure was incorporated in the
design, including accurate active device modeling
and full-wave EM analysis of passive structures.

The first pass success of this LNA chip design
indicates the importance of a rigorous

analysis/design methodology y in the millimeter
wave monolithic IC development.

INTRODUCTION

Monolithic HEMT-based W-band low noise
amplifiers have the advantages of miniature, high
volume and low cost over the conventional diode
or HEMT based hybrid integrated circuit com-
ponents in millimeter wave radar, electronic war-
fare, smart weapon, and surveillance system
applications. The motivation of this work is to
explore the possibility of a high performance W-

band monolithic LNA to achieve the system
requirements.

A W-band monolithic two stage LNA has
been designed, fabricated and tested. The LNA
chip has demonstrated a superior performance:
13.3 dB gain at 94 GHz, 17 dB gain at 89 GHz
and 5.5 dB noise figure from 91 to 95 GHz.
These results not only are the best MMIC LNA

performance at W-band frequency reported to

date [1]-[5], but also rival some recently reported

hybrid LNA results [6]. Moreover, the first
monolithic W-band downconverter has also been
successfully developed using the similar LNA
design [9]. Good modeling techniques were
essential to the success of this MMIC design,
which included active device and full-wave EM
analysis of passive matching structures.

DEVICE CHARACTERISTICS

The devices reported in this paper have been
optimized for high gain operation at W-band.
The 22% PM InGaAs HEMT uses planar doping

to achieve high channel aspect ratio as well as

higher electron transfer efficiency. The MMIC
fabrication process used for this work has been

previously reported [8]. A cross-section of the

HEMT is shown in Fig. 1(a). The 0.1 pm T-
gate PM InGaAs HEMTs fabricated using this
process typically have a DC transconductance of
670 mS/mm with f ~as high as 130 GHz. In this
design, the 40 pm gate periphery HEMT has
been chosen for both stages. The linear
equivalent circuit model of this device used for
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Fig. l(a). The InGaAs HEMT profile.
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simulation is obtained from careful fit of the
measured small signal S-parameters up to 40

GHz as well as estimation based on device physi-
cal parameters. The circuit parameters are shown
in Fig. l(b).
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Fig. 1(b). The linear small signal equivalent cir-

cuit model of 40 pm InGaAs HEMT.

CIRCUIT ANALYSIS AND DESIGN

Fig. 2 shows a photograph of the complete
monolithic two-stage LNA. The circuit is

designed based on conventional reactive matchmg
technique. All the matching networks are real-
ized by microstrip lines on 100 pn-z thick GaAs
substrate. Edge coupled lines are used for DC
block and radial stubs are employed for RF by
pass. IV+ bulk resistors are used to ensure bias

network stability, and reactive ion etching (RIE)
technique is applied to fabricate back side via
holes.

Fig. 2. Photograph of the W-band two stage
MMIC LNA.

The importance of passive elements modeling
at W-band frequencies has been stressed. To
improve the matching and bias structure design
accuracy, a full EM analysis was used. The
edged coupled line and radial stub are chosen as
critical components and characterized by the
method of moment solution of full-wave integral
equation based on the assumption of stratified
medium in a conducting box [7]. Significant
discrepancies exist between the conventional
quasi-static and full wave analyses as shown in
Fig. 3. The S-parameters calculated from the full
wave EM analysis of these critical components

are used to perform the circuit simulation. After
design is finished, the complete matching struc-
tures are analyzed by EM theory again to ensure
no severe coupling effects between =lements.
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Fig. 3(a). Comparison of S-parameters for the

radial stub analyzed via full-wave EM theory
(EM) and quasi-static assumption (LIBRA).

MEASUREMENT RESULTS

The circuit is measured in a specially

designed test fixture. Finline transitions on 3 mil

fused silicon are used to couple the signal from
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Fig. 3(b). Comparison of S-parameters for the
edge coupled lines analyzed via full-wave EM
theory (EM) and quasi-static assumption
(LIBRA).

waveguide to microstrip. The insertion loss of
this transition fixture with a back to back transi-
tion connection is 1.7 to 2 dB from 88 to 96 GHz
(Fig. 4(a)). All the measurement results are

corrected by this factor.

The measurement data are presented in Fig.
4(b)-(e). The noise figure and associated small
signal gain performances from 91 to 95 GHz are
shown in Fig. 4(b). Fig. 4(c) illustrates the input
return loss and uncorrected gain from 80 to 100

GHz. The input return loss are better than 10 dB
from 91 to 97 GHz and at 89 GHz, the measured
gain including fixture loss is 15.3 dB which is 17
dB after correction. Fig. 4(d) presents output
return loss better than 5 dB across the 80 to 100
GHz band. The input power vs. output power
plot is shown in Fig. 4(e). The output 1 dB
compression point of this LNA is 4 dBm and the
output IP3 is 13 dBm. The results presented
above are all under 3V drain bias condition with
0.1 V gate voltage (near g~ peak) for both

stages, the gain is 1 dB lower when biased at 2V

drain voltage.
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Fig. 4(a). Measuxed insertion loss and return loss
of the finline transition.
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Fig. 4(b). Measured noise figure and associated
small signal gain.
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Fig. 4(c) Measured input return loss and

uncorrected gain.
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CONCLUSIONS

We have demonstrated a W-band MMIC two
stage LNA. At 94 GHz, a gain of 13.3 dB and a
noise figure of 5.5 dB have been achieved.
These encouraging results shows the potential of
InGaAs HEMTs for W-band high performance
receiver applications. The excellent device

characteristics and rigorous analysis/design

methodology are the foundations of this success-
ful MMIC design.
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